IMPLEMENTASI KRIPTOGRAFI MENGGUNAKAN ALGORITMA GOST (GOSUDARSTEVVENYI STANDARD) UNTUK PENGIRIMAN E-MAIL PADA APLIKASI CIRUS-MAIL BERBASIS WEB

Sri Gustaria¹, Titin Fatimah²

^{1,2}Fakultas Teknologi Informasi, Universitas Budi Luhur
 Jl. Raya Ciledug, Petukangan Utara, Jakarta Selatan 12260
 Telp. (021) 5853753, Fax. (021) 5866369

E-mail: gustaria96@gmail.com¹, titin.fatimah@budiluhur.ac.id²

Abstrak - Bertukar informasi adalah hal umum yang hampir setiap orang pernah melakukannya, salah satu media komunikasi yang dapat digunakan adalah e-mail. Di era modern ini, keamanan data dalam pertukaran informasi melalui e-mail merupakan hal yang sangat penting. Karena teks pesan yang dikirim terkadang adalah pesan rahasia dan pribadi, sehingga kerahasiaan pesan menjadi sangat penting. Berbagai cara dilakukan orang untuk mendapatkan data dan informasi, meskipun dengan cara mencuri dan lalu mengubah isi dari informasi tersebut. Pada penelitian ini dibuat suatu aplikasi menggunakan teknik kriptografi yang dapat digunakan untuk mengamankan informasi yang dikirim melalui e-mail. Algoritma yang digunakan adalah algoritma GOST (Gosudarstvennyi Standard). Algoritma GOST merupakan algoritma simetris blok cipher 64 bit yang dikenal cukup aman karena memiliki 32 putaran dalam proses enkripsi dan dekripsi. Bahasa pemrograman yang digunakan adalah PHP. Pada aplikasi ini kunci enkripsi dan dekripsi diatur oleh sistem, hal ini dilakukan agar informasi kunci tidak dapat diketahui dengan mudah oleh pihak yang tidak berkepentingan. Berdasarkan implementasi dan pengujian program, dapat disimpulkan bahwa aplikasi ini mudah digunakan, pesan yang dikirim dan diterima melalui aplikasi ini aman karena sudah melalui proses enkripsi terlebih dahulu. Kata kunci - Kriptografi, E-mail, Algoritma GOST

1. PENDAHULUAN

Perkembangan teknologi informasi berkembang pesat saat ini, bukan hanya di negara maju, di negara berkembang pun terjadi peningkatan terhadap penggunaan komputer baik dalam aktifitas bisnis, pendidikan, dan bidang-bidang yang lain. Salah satu perkembangan komputer yang cukup pesat di Indonesia akhir-akhir ini adalah penggunaan internet. Salah satu fitur internet yang banyak dimanfaatkan adalah *e-mail* atau surat elektronik. Dengan menggunakan *e-mail*, pesan menjadi lebih mudah dan lebih cepat tersampaikan bahkan dalam hitungan detik.

Masalah keamanan dan kerahasiaan merupakan salah satu aspek penting dari suatu data, pesan dan informasi. Pengiriman suatu pesan, data dan informasi yang sangat penting membutuhkan tingkat keamanan yang tinggi. Dengan perkembangan teknologi informasi sekarang ini, dimana setiap orang akan mudah untuk mendapatkan suatu pesan, data dan informasi. Berbagai cara dilakukan orang untuk mendapatkan data dan informasi tersebut. Mulai dari tingkatan yang mudah sampai kepada cara-cara yang lebih rumit. Dan dengan berbagai cara pula orang berusaha untuk melindungi pesan, data atau informasi tersebut agar tidak dapat diketahui oleh orang yang tidak memiliki hak atas data tersebut. Pengamanan informasi dapat dilakukan dengan proses enkripsi dan proses dekripsi terhadap pesan atau informasi yang dapat disebut juga dengan kriptografi. Kriptografi adalah ilmu dan seni untuk menjaga kerahasiaan pesan dengan cara meyandikannya kedalam bentuk yang tidak dapat dimengerti lagi maknanya.

Oleh karena itu dibuat suatu aplikasi penyandian informasi atau pesan dengan memanfaatkan media e-mail berbasis web menggunakan algoritma GOST (Gosudarstvennyi Standard). Aplikasi ini dibuat dengan tahapan perancangan sistem SDLC (Software Development Life Cycle) yaitu metode waterfall. Bahasa pemrograman yang digunakan yaitu PHP (Hypertext Preprocessor).

Adapun permasalahan yang dirumuskan adalah sebagai berikut:

- a. Bagaimana mengimplementasikan algoritma GOST ke dalam aplikasi pengiriman *e-mail*?
- b. Bagaimana cara melakukan pengamanan terhadap informasi atau pesan yang dikirim atau diterima melalui media *e-mail* sehingga informasi tersebut bisa terjaga keamanannya?

Tujuan yang dapat diambil dari pembuatan aplikasi ini adalah sebagai berikut :

- Mengembangkan suatu aplikasi pengamanan data menggunakan algoritma kriptografi GOST untuk mengamankan informasi atau pesan yang sifatnya rahasia.
- b. Mengamankan *file* dan pesan yang dikirim atau diterima melalui *e-mail* agar tidak dapat diketahui oleh orang yang tidak bertanggung jawab.
- c. Menghasilkan aplikasi *e-mail* yang menggunakan teknik kriptografi yang

diharapkan mudah dimengerti dan digunakan oleh pengguna.

Pada aplikasi ini, file yang dapat dienkripsi dan didekripsi hanya *file* dengan ekstensi: *.txt, *.doc, *.docx, *pdf, *.ppt, *.pptx, *.xls, dan *.xlsx.

2. LANDASAN TEORI

2.1. Algoritma Kriptografi

Algortima kriptografi merupakan langkah-langkah logis untuk menyembunyikan pesan dari orangorang yang tidak berhak atas pesan tersebut [1]. Di dalam kriptografi terdapat beberapa istilah atau terminologi, yaitu sebagai berikut:

1) Pesan, Plainteks, dan Cipherteks

Pesan (message) adalah data atau informasi yang dapat dibaca dan dimengerti maknanya. Nama lain untuk pesan adalah plainteks (plaintext) atau teksjelas (cleartext). Pesan dapat berupa data atau informasi yang dikirim (melalui kurir, saluran telekomunikasi, dsb) atau yang disimpan di dalam media perekaman (kertas, storage, dsb). Pesan yang tersimpan tidak hanya berupa teks, tetapi juga dapat berbentuk citra (image), suara/bunyi (audio) dan video, atau berkas biner lainnya. Agar pesan tidak dapat dimengerti maknanya oleh pihak lain, maka pesan perlu disandikan ke bentuk lain yang tidak dapat dipahami. Bentuk pesan yang tersandi disebut cipherteks (ciphertext) atau kriptogram (cryptogram). Cipherteks harus dapat ditransformasikan kembali menjadi plainteks semula agar pesan yang diterima bisa dibaca.

2) Pengirim dan penerima

Komunikasi data melibatkan pertukaran pesan antara dua entitas. Pengirim (sender) adalah entitas yang mengirim pesan kepada entitas lainnya. Penerima (receiver) adalah entitas yang menerima pesan. Entitas di sini dapat berupa orang, mesin (komputer), kartu kredit, dan sebagainya. Jadi, orang bisa bertukar pesan dengan orang lainnya. Pengirim tentu menginginkan pesan dapat dikirim secara aman, yaitu ia yakin bahwa pihak lain tidak dapat membaca isi pesan yang ia kirim. Solusinya adalah dengan cara menyandikan pesan menjadi cipherteks.

3) Enkripsi dan Dekripsi

Proses menyandikan plainteks menjadi cipherteks disebut enkripsi (encryption) atau enciphering (standar nama menurut ISO 7498-2). Sedangkan proses mengembalikan cipherteks menjadi plainteks semula dinamakan dekripsi (decryption) atau deciphering (standar nama menurut ISO 7498-2). Enkripsi dan dekripsi dapat diterapkan baik pada pesan yang dikirim maupun pada pesan tersimpan. Istilah encryption of data in motion mengacu pada enkripsi pesan yang ditransmisikan melalui saluran komunikasi, sedangkan istilah encrypton of data at-rest mengacu pada enkripsi

dokumen yang disimpan di dalam *storage*. Contoh *encryption of data inmotion* adalah pengiriman nomor PIN dari mesin ATM ke komputer *server* di kantor bank pusat.

Contoh *encryption of data at-rest* adalah enkripsi *file* basis data di dalam *hard disk*.

4) Cipher dan Kunci

Algoritma kriptografi disebut juga cipher yaitu aturan untuk enchipering dan dechipering, atau fungsi matematika yang digunakan untuk enkripsi dan dekripsi. Beberapa cipher memerlukan algoritma yang berbeda untuk enciphering dan deciphering. Konsep matematis yang mendasari algoritma kriptografi adalah relasi antara dua buah himpunan yaitu himpunan yang berisi elemenelemen plainteks dan himpunan yang berisi cipherteks. Enkripsi dan dekripsi merupakan fungsi yang memetakan elemen-elemen antara kedua himpunan tersebut. Kriptografi modern mengatasi masalah keamanan data dengan penggunaan kunci, yang dalam hal ini algoritma tidak lagi harus dirahasiakan. tetapi kunci dijaga kerahasiaannya. Kunci (key) adalah parameter yang digunakan untuk transformasi enciphering dan dechipering. Kunci biasanya berupa string atau deretan bilangan.

5) Sistem Kriptografi

Kriptografi membentuk sebuah sistem yang dinamakan sistem kriptografi. Sistem kriptografi (cryptosystem) adalah kumpulan yang terdiri dari algoritma kriptografi, semua plainteks dan cipherteks yang mungkin, dan kunci. Di dalam sistem kriptografi, cipher hanyalah salah satu komponen saja.

6) Penyadap

Penyadap (eavesdropper) adalah orang yang mencoba menangkap pesan selama ditransmisikan. Tujuan penyadap adalah untuk mendapatkan informasi sebanyak-banyaknya mengenai sistem kriptografi yang digunakan untuk berkomunikasi dengan maksud untuk memecahkan cipherteks. Nama lain penyadap: enemy, adversary, intruder, interceptor, bad guy. Ron Rivest, seorang pakar kriptografi, menyatakan bahwa cryptography is about communication in the presence of adversaries (Kriptografi adalah perihal berkomunikasi dengan keberadaan pihak musuh).

7) Kriptanalis dan Kriptologi

Kriptografi berkembang sedemikian rupa sehingga melahirkan bidang yang berlawanan yaitu kriptanalisis. Kriptanalisis (cryptanalysis) adalah ilmu dan seni untuk memecahkan chiperteks menjadi plainteks tanpa mengetahui kunci yang digunakan. Pelakunya disebut kriptanalis. Jika seorang kriptografer (cryptographer) mentransformasikan plainteks menjadi cipherteks

dengan suatu algoritma dan kunci maka sebaliknya seorang kriptanalis berusaha untuk memecahkan cipherteks tersebut untuk menemukan plainteks atau kunci. Kriptologi (*cryptology*) adalah studi mengenai kriptografi dan kriptanalisis. Baik kriptografi maupun kriptanalisis keduanya saling berkaitan [3].

2.2. Algoritma GOST

Algoritma GOST merupakan blok kode dari bekat Uni Soviet, yang merupakan singkatan dari Gosudarstvennyi Standard atau standar pemerintah. GOST merupakan blok kode 64 bit dengan panjang kunci 256 bit. Algoritma ini mengiterasi algoritma enkripsi sederhana sebanyak 32 putaran.

Untuk mengenkripsi pertama-tama plainteks 64 bit dipecah menjadi 32 bit bagian kiri, L dan 32 bit bagian kanan, R. Subkunci (subkey) untuk putaran i adalah Ki. Pada satu putaran ke-i operasinya adalah sebagai berikut [1]:

$$Li = R i-1$$

 $Ri = L i-1 \text{ xor } f(R i-1, Ki)$

1. Proses Pembangkitan Kunci

Kunci internal pada algoritma GOST dibangkitkan dari kunci eksternal yang diberikan oleh pengguna [3]. Pembangkitan kunci internal dilakukan dengan membagi kunci eksternal 256 bit (k1, k2, k3, k4, ..., k256) ke dalam delapan bagian yang masingmasing panjangnya 32 bit. Pembagiannya adalah sebagai berikut:

```
K0 = (k32, ...., k1)

K1 = (k64, ...., k33)

K2 = (k96, ...., k65)

K3 = (k128, ...., k97)

K4 = (k160, ...., k129)

K5 = (k192, ...., k161)

K6 = (k224, ...., k193)

K7 = (k256, ...., k225)
```

2. Proses Enkripsi

Proses Enkripsi pada algoritma GOST untuk satu putaran (iterasi), adalah sebagai berikut:

 64 bit plainteks dibagi menjadi 2 buah bagian 32 bit, yaitu L_i dan R_i.

Caranya : Input a1(0), a2(0),, a32(0) ; b1(0), b2(0),, b32(0) R0 = a32(0), a31(0),, a1(0) L0 = b32(0), b31(0),, b1(0)

- (R_i + K_i) mod 2³². Hasil dari penjumlahan modulo 2³² berupa 32 bit.
- 3) Hasil dari penjumlahan modulo 2³² dibagi menjadi 8 bagian, dimana masing-masing bagian terdiri dari 4 bit. Setiap bagian dimasukkan ke dalam table *S-box* yang berbeda, 4 bit pertama menjadi input dari *S-Box* 0, 4 bit kedua menjadi *S-Box* 1 dan seterusnya.

Tabel 1 : S-Box Algoritma GOST

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0x	4	10	9	2	13	8	0	14	6	11	1	12	7	15	5	3
1x	14	11	4	12	6	13	15	10	2	3	8	1	0	7	5	9
2x	5	8	1	13	10	3	4	2	14	15	12	7	6	0	9	11
3x	7	13	10	1	0	8	9	15	14	4	6	12	11	2	5	3
4x	6	12	7	1	5	15	13	8	4	10	9	14	0	3	11	2
5x	4	11	10	0	7	2	1	13	3	6	8	5	9	12	15	14
6x	13	11	4	1	3	15	5	9	0	10	14	7	6	8	2	12
7x	1	15	13	0	5	7	10	4	9	2	3	14	6	11	8	12

- 4) Hasil yang didapat dari substitusi ke S-Box kemudian digabungkan kembali menjadi 32 bit dan kemudian dilakukan RLS (*Rotate Left Shift*) pergeseran ke kiri sebanyak 11 bit.
- 5) $R_{i+1} = RLS XOR L_i$
- 6) $L_{i+1} = R_i$ sebelum dilakukan proses

Langkah nomor 2 sampai 6 dilakukan sebanyak 32 kali (putaran). Pada langkah nomor 2 penggunaan kunci dijadwalkan penggunaannya sesuai dengan putarannya.

Tabel 2 : Penjadwalan Kunci Internal Enkripsi

Putaran	0	1	2	3	4	5	6	7
Kunci Internal	K0	K1	K2	K3	K4	K5	K6	K7
Putaran	8	9	10	11	12	13	14	15
Kunci Internal	K0	K1	K2	K3	K4	K5	K6	K7
Putaran	16	17	18	19	20	21	22	23
Kunci Internal	K0	K1	K2	K3	K4	K5	K6	K7
Putaran	24	25	26	27	28	29	30	31
Kunci Internal	K7	K6	K5	K4	K3	K2	K1	K0

Untuk putaran ke-31, langkah nomor 5 dan 6 sedikit berbeda. Langkah 5 dan 6 untuk putaran 31 adalah sebagai berikut :

R32 = R31 sebelum dilakukan proses

L32 = L31 XOR R 31

Sehingga cipherteks yang dihasilkan adalah,

L32: b(32), b(31),, b(1)R32: a(32), a(31),, a(1)Chiperteks = a(1),, a(32); b(1),, b(32).

3. Proses Dekripsi

Proses dekripsi merupakan kebalikan dari proses enkripsi. Penggunaan kunci pada masing-masing putaran pada proses dekripsi adalah sebagai berikut:

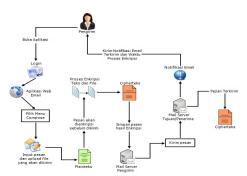
Tabel 3 :Penjadwalan Kunci Internal Dekripsi

Putaran	0	1	2	3	4	5	6	7
Kunci Internal	K0	K1	K2	K3	K4	K5	K6	K7
Putaran	8	9	10	11	12	13	14	15
Kunci Internal	K7	K6	K5	K4	K3	K2	K1	K0
Putaran	16	17	18	19	20	21	22	23
Kunci Internal	K7	K6	K5	K4	K3	K2	K1	K0
Putaran	24	25	26	27	28	29	30	31
Kunci Internal	K7	K6	K5	K4	К3	K2	K1	K0

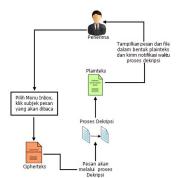
Di dalam proses dekripsi terdapat aturan sama dengan proses enkripsi yaitu untuk langkah ke-5 dan ke-6 pada putaran ke-31 sebagai berikut:

> R32 = R31 sebelum dilakukan proses L32 = L31 XOR R31

Sehingga, plainteks yang dihasilkan pada proses dekripsi adalah [4],


```
L32: b(32), b(31), ...., b(1)
R32: a(32), a(31), ...., a(1)
Plainteks = a(1), ...., a(32); b(1), ...., b(32).
```

2.3. *E-mail*


E-mail merupakan singkatan dari Electronic Mail (surat elektronik) adalah fasilitas dalam internet untuk surat-menyurat. Dengan adanya e-mail berkirim surat dan berbagi informasi kepada keluarga dan sahabat menjadi lebih mudah, cepat dan hemat karena tidak memerlukan biaya yang terlalu mahal jika dibandingkan dengan berkirim surat melalui Pos atau jasa pengiriman lainnya. E-mail yang dikirimkan pun bukan hanya berupa teks saja, tetapi dapat berupa file gambar, musik, film, dan file dokumen lainnya [5].

3. RANCANGAN SISTEM DAN APLIKASI 3.1. Alur Aplikasi

Berikut ini adalah gambaran alur kerja aplikasi untuk proses pengiriman dan penerimaan *email*:

Gambar 1 : Alur Proses Pengiriman Email

Gambar 2 : Alur Proses Penerimaan Email

3.2. Algoritma Program

a. Algoritma Proses Enkripsi GOST

Algoritma ini menjelaskan tentang proses enkripsi dan merupakan kelanjutan dari halaman *compose*.

- 1. Start
- 2. Ambil Subject
- 3. Proses pembangkitan kunci
- 4. Bagi kunci menjadi k1 sampai k7

```
masing-masing 32 bit
       Simpan ke dalam table Penjadwalan
   Kunci Enkripsi
       Ambil Plainteks
6.
       Hitung panjang Plainteks
7.
       Simpan Plainteks menjadi blok-blok 64
8.
   bit ke dalam array
9.
       i = 0
10.
       If i < 32
11.
             Pi = (Ri+Ki) \mod 2^32
12.
             Substitusikan dengan table Sbox
13.
             Bagi menjadi 8 bagian
14.
             RLS (Rotate Left Shift) 11 bit ke
   kiri
15.
             Ri+1 = RLS XOR Li
             Li + 1 = Ri sebelum proses
16.
             i++
17.
             Kembali ke baris 6
       Else
18.
             lakukan pembalikan string Li dan
   Ri
19.
             RL[i] = Ri dan Li
20.
           Cipherteks = RL [i]
21.
       End If
22. End
```

b. Algoritma Proses Dekripsi GOST

Algoritma ini menjelaskan tentang proses dekripsi dan merupakan kelanjutan dari halaman *inbox*.

```
Start
1.
2.
        Ambil Subject
3.
        Proses pembangkitan kunci
4.
        Bagi kunci menjadi k1 sampai k7
   masing-masing 32 bit
5.
        Simpan ke dalam table Penjadwalan
   Kunci Enkripsi
6.
        Ambil Cipherteks
        Hitung panjang Cipherteks
7.
8.
        Simpan Cipherteks menjadi blok-blok
   64 bit ke dalam array
9.
       i = 0
       If i < 32
10.
11.
              Pi = (Ri+Ki) \mod 2^32
12.
              Substitusikan dengan table Sbox
13.
              Bagi menjadi 8 bagian
              RLS (Rotate Left Shift) 11 bit ke
14.
   kiri
15.
              Ri+1 = RLS XOR Li
              Li + 1 = Ri sebelum proses
              i ++
16.
17.
              Kembali ke baris 6
        Else
18.
             lakukan pembalikan string Li dan
   Ri
19.
             RL [i] = Ri dan Li
20.
         Plainteks = RL [i]
21.
        End If
22. End
```

c. Algoritma Proses Enkripsi File

Algoritma ini menjelaskan tentang proses enkripsi file dan merupakan kelanjutan dari halaman compose.

```
1. Start
        Buka isi file
        Ambil isi file
3.
        Hitung panjang isi file
4.
        If Isi panjang isi file <= 34
5.
            Jalankan proses Enkripsi base64
6.
            Jalankan proses Enkripsi Gost
7.
            Cipherteks = Cipher Gost
8.
9.
            Jalankan proses Enkripsi base64
10.
11.
            Jalankan proses Enkripsi Gost
            Cipherteks
                              Cipher Gost
12.
    Cipher Base64
        End If
13.
14. End
```

d. Algoritma Proses Dekripsi File

Algoritma ini menjelaskan tentang proses dekripsi *file* dan merupakan kelanjutan dari halaman *inbox*.

1.	Start	
2.	Ambil isi Cipherteks	
3.	Hitung panjang Cipherteks	
4.	If Isi panjang Cipherteks <= 34	
5.	Jalankan proses Dekripsi Gost	
6.	Jalankan proses Dekripsi Base64	
7.	Plainteks = Plain_Gost	
8.	Else	
9.	Jalankan proses Dekripsi Gost	
10.	Jalankan proses Dekripsi Base64	
11.	Plainteks = Plain_Gost	+
	Plain_Base64	
12.	End If	
13.	End	

4. HASIL DAN PEMBAHASAN

4.1. Tampilan Layar Program

a. Tampilan Layar *Login*

Halaman *login* ini akan tampil pertama kali ketika aplikasi dijalankan yang menjadi penghubung ke halaman utama.

Gambar 3 : Tampilan Layar Login

b. Tampilan Layar Halaman Utama

Halaman utama ini akan tampil ketika *user* sudah berhasil melakukan *login*. Pada halaman ini

terdapat beberapa menu yang dapat dipilih *user*, yaitu menu *compose*, menu *inbox*, menu *help*, dan menu *about*.

Gambar 4 : Tampilan Layar Halaman Utama


c. Tampilan Layar Compose

Halaman *compose* ini adalah halaman yang digunakan *user* untuk mengirimkan *email* menggunakan aplikasi ini.

Gambar 5: Tampilan Layar Compose

User harus mengisi alamat e-mail tujuan, *subject* pesan dan isi pesan yang akan dikirimkan, serta melampirkan *file* jika diperlukan.

Gambar 6 : Tampilan Layar Tulis Pesan

Saat *e-mail* berhasil dikirim akan ada pesan pemberitahuan, *e-mail* berhasil dikirim dan waktu eksekusi untuk kirim *e-mail*.

Gambar 7: Tampilan Layar Pesan Terkirim

d. Tampilan Layar Inbox

Pada halaman ini, *user* dapat melihat daftar pesan yang masuk dan membaca pesan tersebut.

Gambar 8 : Tampilan Layar Inbox

Sebelumnya isi *e-mail* tersebut telah dienkripsi, dan saat *user* mengklik *subject*, isi *e-mail* tersebut langsung terdekripsi. Dan jika pada *e-mail* tersebut terdapat lampiran *file*, maka untuk mengunduhnya *user* harus mengklik link *download attachment*.

Gambar 9 : Tampilan Layar Baca Pesan

Isi dari *file* secara otomatis akan terdekripsi setelah *user* berhasil mengunduh *file* tersebut.

Gambar 10 : Tampilan Layar File Terdekripsi

e. Tampilan Layar Help

Pada halaman ini, *user* dapat mengetahui petunjuk penggunaan aplikasi ini.

Gambar 11 : Tampilan Layar Help

4.2. Pengujian Program

Pengujian aplikasi dilakukan menggunakan Laptop Acer Aspire 4750. Berikut rincian dan gambaran pengujian aplikasi:

a. Pengujian Proses Enkripsi

Tabel 4: Tabel Pengujian Proses Enkripsi Teks

			Proses Enkripsi	
No	Plainteks	Kunci	Cipherteks	Waktu
1.	Hallo!	Seman	56d9e02fb9f6	0.984
	Selamat	gat!	af5ce5bb2734	Detik
	pagi.		da23c86c72c0	
			8cc2804c4293	
2.	131150289,	Unive	61111d86a05f	1.624
	Sri Gustaria,	rsitas	dac249c555b0	Detik
	Fakultas	Budilu	39f27e686df2	
	Teknologi	hur	507b93c10c9e	
	Informasi,	Jakart	75620174faad	
	Teknik	a 13	5dd4bb9f8b7c	
	Informatika.		975ea3a10d6e	
			d9a720528b5	
			6bbe526cb0bc	
			4637ade0b008	
			86d8fded8b1b	
			7335b9c5e673	
			0f173130478b	
			0b750	
3.	"Jika ragu	John	ba9103bdc151	2.418
	dalam	Lubbo	ae9bf9fc71cf5	Detik
	melakukan	ck	ec5f246b9c46	
	sesuatu,		e06b4956120	
	sebaiknya		4ab9ecc95a48	
	tanya		343e2bd1f504	
	kepada diri		8d07aa5d4297	
	sendiri, apa		d89e3c40e3d4	
	yang kita		b94e3d5a6de9	
	inginkan		d0d10a51e496	
	esok hari		e749d3995aa6	
	dari apa		133cfe0b26aa	
	yang telah		e3c6a34f6099	
	kita lakukan		8cf98cc76695	
	sebelumnya		e1797b56faac	
	". Oleh Jonh		823f24ddc531	
	Lubbock -		e8442c943b5b	
	pakar		aa2a8dde52e4	
	boilogi		89ec7c801c14	
	Inggris.		4dd7e51e1744	
			188b330319b	
			af71e40d6199	

	c724b03b9f18	
	c4c3093fcd0e	
	b1d28acd879f	
	e634f00bfe71	
	3945fad8d7d5	
	c3014e9fc50b	
	8ef7c2a7194d	
	5e25c1555ec4	
	c145fc0c5dad	
	d5868f256bd4	
	46f3b07bcdce	
	d3bbb	

Tabel 5 : Tabel Pengujian Proses Enkripsi File

Nama	Ukuran	Nama	Ukuran	Waktu
File	File	File Hasil	File	
		Enkripsi	Hasil	
		F	Enkrips	
Tutorial	2.28 Kb	Tutorial	3.1 Kb	1.974
API.txt		API.txt		Detik
LPJ	205 Kb	LPJ	273 Kb	3.832
Pelatihan		Pelatihan		Detik
Eksternal.		Eksternal.		
doc		doc		
PERHITU	105 Kb	PERHITU	141 Kb	10.440
NGAN		NGAN		Detik
KRIPTO		KRIPTO		
GRAFI		GRAFI		
METODE		METODE		
GOST.doc		GOST.doc		
X		X		
Pengemba	651 Kb	Pengemba	869 Kb	8.354
ngan		ngan		Detik
Algoritma		Algoritma		
Kriptograf		Kriptograf		
i Gost.pdf		i Gost.pdf		
Algoritma	1.87 Mb	Algoritma	2.50 Mb	20.018
GOST.ppt		GOST.ppt		Detik
LAPORA	1.44 Mb	LAPORA	1.91 Mb	17.820
N		N		Detik
SENSUS		SENSUS		
KAMPAR		KAMPAR		
.pptx		.pptx		
List	33 Kb	List	44 Kb	2.851
Abaya.xls		Abaya.xls		Detik
Ganchart	15.7 Kb	Ganchart	21 Kb	2.661
Pelatihan.		Pelatihan.		Detik
xlsx		xlsx		

b. Pengujian Proses Dekripsi

Tabel 6 : Tabel Pengujian Proses Dekripsi Teks

No	Cipherteks	Kunci	Plainteks	Waktu
1.	56d9e02fb9f6	Seman	Hallo!	0.013
	af5ce5bb2734	gat!	Selamat	Detik
	da23c86c72c0		pagi.	
	8cc2804c4293			
2.	61111d86a05f	Unive	131150289	0.072
	dac249c555b0	rsitas	0, Sri	Detik
	39f27e686df2	Budilu	Gustaria,	
	507b93c10c9e	hur	Fakultas	
	75620174faad	Jakart	Teknologi	
	5dd4bb9f8b7c	a 13	Informasi,	
	975ea3a10d6e		Teknik	
	d9a720528b5		Informatik	
	6bbe526cb0bc		a.	

				ı
	4637ade0b00			
	886d8fded8b1			
	b7335b9c5e6			
	730f17313047			
	8b0b750			
3.	ba9103bdc15	John	"Jika ragu	0.209
	1ae9bf9fc71cf	Lubbo	dalam	Detik
	5ec5f246b9c4	ck	melakukan	
	6e06b495612		sesuatu,	
	04ab9ecc95a4		sebaiknya	
	8343e2bd1f50		tanya	
	48d07aa5d42		kepada diri	
	97d89e3c40e3		sendiri,	
	d4b94e3d5a6		apa yang	
	de9d0d10a51e		kita	
	496e749d399		inginkan	
	5aa6133cfe0b		esok hari	
	26aae3c6a34f		dari apa	
	60998cf98cc7		yang telah	
	6695e1797b5		kita	
	6faac823f24d		lakukan	
	dc531e8442c9		sebelumny	
	43b5baa2a8dd		a". Oleh	
	e52e489ec7c8		Jonh	
	01c144dd7e5		Lubbock -	
	1e1744188b3		pakar	
	30319baf71e4		boilogi	
	0d6199c724b		Inggris.	
	03b9f18c4c30			
	93fcd0eb1d28			
	acd879fe634f			
	00bfe713945f			
	ad8d7d5c301			
	4e9fc50b8ef7			
	c2a7194d5e25			
	c1555ec4c145			
	fc0c5dadd586			
	8f256bd446f3			
	b07bcdced3bb			
	b			

Tabel 7: Tabel Penguijan Proses Dekripsi File

Nama File	Ukuran	Nama File	Ukuran
Nama Fue			
	File	Hasil Enkripsi	File
			Hasil
			Enkrips
Tutorial	3.1 Kb	Tutorial API.txt	2.28 Kb
API.txt			
LPJ Pelatihan	273 Kb	LPJ Pelatihan	205 Kb
Eksternal.doc		Eksternal.doc	
PERHITUNG	141 Kb	PERHITUNGA	105 Kb
AN		N	
KRIPTOGR		KRIPTOGRAFI	
AFI		METODE	
METODE		GOST.docx	
GOST.docx			
Pengembanga	869 Kb	Pengembangan	651 Kb
n Algoritma		Algoritma	
Kriptografi		Kriptografi	
Gost.pdf		Gost.pdf	
Algoritma	2.50 Mb	Algoritma	1.87 Mb
GOST.ppt		GOST.ppt	
LAPORAN	1.91 Mb	LAPORAN	1.44 Mb
SENSUS		SENSUS	
KAMPAR.pp		KAMPAR.pptx	
tx			

List	44 Kb	List Abaya.xls	33 Kb
Abaya.xls			
Ganchart	21 Kb	Ganchart	15.7 Kb
Pelatihan.xlsx		Pelatihan.xlsx	

5. PENUTUP

5.1. Kesimpulan

Berdasarkan proses perancangan, pembuatan, dan pengujian aplikasi CIRUS-Mail yang digunakan untuk mengamankan isi sebuah akun *e-mail*, maka dapat diambil suatu kesimpulan, yaitu:

- a. Aplikasi ini telah diatur oleh sistem sehingga isi pesan atau data yang terkandung dalam akun *e-mail* tersebut otomatis telah dienkripsi.
- b. Meminimalisir kemungkinan kebocoran pesan yang terdapat di akun *e-mail* apabila menjadi korban dari *hacker*, karena pesan tersebut sudah dienkripsi.
- c. Waktu untuk mengirim pesan berbanding lurus dengan ukuran teks dan ukuran file yang akan dienkripsi, semakin kecil ukuran teks dan filenya maka semakin cepat waktu pengirimannya.

5.2. Saran

Untuk pengembangan lebih lanjut agar aplikasi ini menjadi lebih baik lagi, adapun saran yang diberikan antara lain:

a. Aplikasi ini hanya dapat menyisipkan file *.txt, *.doc, *.docx, *.pdf, *.ppt, *.pptx, *.xls, *.xlsx

- dan untuk itu perlu dikembangkan untuk menambahkan *file* dengan *extension* lainnya.
- Interface masih sederhana, diharapkan dapat ditambahkan beberapa fitur seperti forward message, delete message, halaman draft, halaman sent, dan lainnya.
- Dalam pengembangannya, aplikasi ini dapat menggunakan metode kompresi sehingga ukuran file yang dienkrip atau didekrip dapat lebih diminimalisir.

DAFTAR PUSTAKA

- [1] Ariyus, Doni. 2008. Pengantar Ilmu Kriptografi Teori, Analisis, dan Implementasi. Yogyakarta: C.V Andi OFFSET.
- [2] Churchhouse, Robert. 2004. Codes and Ciphers, Julius Caesar, the Enigma, and the Internet. UK: Cambridge University Press.
- [3] Munir, R. 2006. *Kriptografi*. Bandung : Informatika.
- [4] Oppliger, Rolf. 2005. *Contemporary Cryptography*. USA: Artech House, Inc.
- [5] Pardosi, Mico. 2006. *E-mail gratis Yahoo! Indonesia*. Surabaya: Dua Selaras.
- [6] Presmann, S. Roger. 2001. Software Engineering: A Practitioner is Approach. McGraw-Hill Companies. New York.
- [7] Sadikin, Rifki. 2012. Kriptografi untuk Keamanan Jaringan. Yogyakarta.